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Conceptual Summary for E&M 
 
 

This is meant to be a quick and dirty summary of the conceptual points presented during 
the second semester in AP Physics (that is, while we were studying E&M, minus the magnetism 
and induction sections).  It is probably not definitive, but it hits most of the high points.  Few 
equations are being used because this year’s test is going to be a prose special, and formulas are 
not going to be as important as understanding the underlying physics. 

 
 

 
Electrostatics: 
 

--conductors have metallic bonding; 
 
--the valence electrons in a conductor can move around freely; 
 
--when external charge is brought close to an uncharged conductor, the valence electrons in 

the conductor will rearrange themselves so that the conductor will be attracted to the source; 
 
--insulators have covalent bonding; 
 
--the valence electrons in an insulator cannot move around freely outside their bonding 

couples; 
 
--when external charge is brought close to an uncharged insulator, the electrons in the atoms 

of the insulator will either be attracted to or repulsed by the charge (depending upon 
whether the charge is positive or negative), spending more time on one side of the atom than 
the other—this effect (van der Waal’s effect) will cause an internal polarization that will 
cause the insulator to be attracted to the external charge; 

 
--bottom line: bring an external charge close to ANY electrically neutral structure, be it a 

conductor or insulator, and the structure will be attracted to the charge; 
 
--if you have an external charge and want to charge a conductor with that same type of charge, 

touch the two together (in doing so, their electrical potentials, their voltages, will become 
the same); 

 
--if you have an external charge and want to charge a conductor with the opposite charge, 

bring the charge close (but do not touch) so that like charge on the conductor’s will move to 
the opposite side of the conductor (opposite to where the external charge is), then touch the 
side opposite—that will remove some of the like-charge leaving the conductor with a 
preponderance of the opposite charge; 

 
--the unit for charge in the MKS system is coulombs; 
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--the force between two point charges (Coulomb’s Law) is proportional to the magnitude of 
the two charges and inversely proportional to the distance between the two charges squared; 

 
--the proportionality constant in Coulombs Law was the inverse of four-pi times the 

permittivity of free space, or ; 

 
--the direction of the force one point charge due to the presence of a second point charge is 

determined by whether the charges are like (repulsion) or unlike (attraction);      
 
 

 
Electric fields: 
 

--the magnitude of an electric field, evaluated at a point, gives you a measure of the force per 
unit charge available at that point due to a field-producing charge or charge configuration; 

 

--that is, ; 

 
--one set of units for an electric field is newtons/coulomb; 
 
--electric fields are vectors, which means components often come into play when dealing with 

them; 
 
--when the field-producing charge is a point-charge, the magnitude of the electric field, 

evaluated at a point some distance from the charge, is proportional to the magnitude of the 
charge and inversely proportional to the square of the distance between the charge and the 
point of interest; 

 
--at a particular point, the direction of an electric field is defined as the direction a positive test 

charge would accelerate if put at the point and released; 
 
--one approach for deriving an expression for the electric field function for an extended charge 

is to define a differential point charge dq, determine the differential electric field at the point 
of interest due to that bit of charge, break that differential electric field into components, 
capitalize on symmetry, then integrate to determine the total field due to all of the charges; 

 
--when executing the operation outlined above, a linear charge density  (coulombs/meter) is 

sometimes required; 
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Gauss’s Law: 
 

--a measure of the amount of field that passes through a surface is called flux; 
 
--assume a flat surface: a surface area vector  (magnitude equal to the area of a surface; 

direction perpendicularly out from the surface’s face) can be defined for the surface; 
 
--if the surface alluded to above is placed in a vector field  , a flux  will pass through the 

surface equal to the component of E perpendicular to the face times the area, or ; 
 
--electric flux is a measure of the amount of electric field that passes through a surface; 
 
--in terms of electric field lines, the more lines that pass through a given surface, net, the 

greater the electric flux through the surface; 
 
--Gauss observed that if you place a closed surface in an electric field, the electric flux 

through that closed surface will be proportional to the charge enclosed inside the surface; 
 
--Gauss’s rational was that charge outside the closed surface would produce negative flux as a 

line moved into the surface and an equal amount of positive flux as the line exited the 
surface, so the only net flux would come from charge inside the surface; 

 
--the proportionality constant in Gauss’s law was the inverse of the permittivity of free space, 

or ; 

 
--Gauss’s Law always works, even when there is no symmetry to the internal charge and the 

surface enclosing the charge; 
 
--Gauss’s Law can be used to derive electric field functions if you can find a surface that has 

one or more of the following characteristics:  
a.) the magnitude of the electric field is constant everywhere on the surface; 
b.) the flux is zero through the surface; 
c.) the direction of the electric field vector and the area vector have the same relationship at 

every point on the surface; 
 

--for point charge configurations or spherical geometries (balls of charge, etc.), spherical 
symmetry works for Gauss’s Law; 

 
--for extruded charge configurations like wires, cylindrical symmetry works for Gauss’s Law; 
 
--for sheets of charge, plugs work (the ends have non-zero flux quantities and the walls have 

zero flux quantities); 
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--the left side of Gauss’s Law ( ) in spherical situations, assuming symmetry is 

exploited, is always equal to the electric field magnitude E times the surface area of the 
Gaussian sphere, or .  

 
--the left side of Gauss’s Law ( ) in cylidrical situations, assuming symmetry is 

exploited, is always equal to the electric field magnitude E times the surface area of the 
Gaussian cylinder of length L (without the end-caps), or . 

 

--the hard part of Gauss’s Law is calculating the right side of the equation, the part; 

 
--a volume charge density  or a surface charge density  is often required to determine the 

charge enclosed in an imaginary Gaussian surface; 
 
--as derived by Gauss’s Law, the electric field outside an infinitely large conducting sheet is 

equal to , where  is the charge density associated with the sheet; 

 
--as derived by Gauss’s Law, the electric field outside an infinitely large insulating sheet is 

equal to , where  is the charge density associated with the sheet; 

 
--it is important to notice that  means something different in the case of an insulator versus a 

conductor; 
 
--for a conductor,  tells you how much charge is on the surface of one side of the sheet, per 

unit area--(example: you give me an area, gives you how much charge is on the sheet in 
that area);     

 
--for an insulator,  tells you how much charge is shot all the way through the insulator, per 

unit area--(example: you give me an area, gives you how much charge exists throughout 
the volume behind the area);  

 
 

 
Electric Potentials and energy considerations: 
 

--absolute electric potential is defined as the amount of potential energy per unit charge 

available ( ) at a point in an electric field; 

!
E id
!
A

S∫

E 4πr2( )
!
E id
!
A

S∫

E 2πrL( )
qencl
εo

ρ σ

σ
εo

σ

σ
2εo

σ

σ

σ
σA

σ
σA

Vat  a point =
Uof  q eval at point

q



 5 

 
--the units of the absolute electric potential is joules/coulomb, or the volt; 
 
--absolute electric potentials only exist for electric force fields that are conservative (static 

charges produce these); 
 
--there is a direct parallel between the math associated with potential energy functions and 

energy considerations, and electric potentials and energy considerations, E&M style; 
 
--the work per unit charge done by an electric field as a charge moves from one point to 

another is equal to minus the change in the absolute electric potential between the two 

points (that is ); 

 
--put differently, the work done on a charge as it moves from one point to another in an 

electric field will equal the charge (sign include) time the voltage change between the 
points, or ;  

 
--as work is force dotted into displacement, work per unit charge done is force per unit charge 

(or the electric field) dotted into displacement, or  (this assumes a constant  and 
constant  and non-varying angle between the two vectors); 

 
--in a situation in which the electric field is varying, or the path somehow varies relative to the 

direction of the electric field, the differential work per unit charge over a differential 
displacement will be the electric field dotted into the differential displacement , 
that being , and the net work per unit charge over the macroscopic displacement will 
be the sum of all of those differential quantities, or ;  

 
--combining the work per unit charge relationships, apparently the relationship between the 

electric field and the electric potential field associated with a field-producing charge 
configuration is ; 

 
--if you know an electric field function and you want its electric potential function, in other 

words, if you sum all the differential ’s between where the field is zero and an 
arbitrary point, you will get a function for V(r);  

 

--putting the above statement a little differently, ;  

 
--looking at that relationship a little differently, apparently minus the electric potential field is 

the spatial antiderivative of the electric field, or the electric field function is minus the 
derivative to the electric potential function; 
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--putting the above statement a little differently, , where the partial derivative is 

meant to denote a spatial derivative of the electric potential in the radial direction holding all 
other variables constant; 

 

--translating this into cartesian geometry, we get, , where the partial derivative 

is meant to denote a spatial derivative of the electric potential in the x-direction holding all 
other variables constant; 

 
--from this, another acceptable unit for electric field in the MKS system is volts per meter; 

 
--for fields that have multiple dimensions, each component has a derivative associated with it 

so that in its most general form, ; 

--the shortcut notation for this uses a del operator and looks like ; 
 

--the point is that at a given point in space, an electric field is related to (minus) the RATE its 
associated electric potential field CHANGES spatially; 

 
--if graph 1 is an electric potential versus position graph, 

what can you say about the region (solution below); 
 
--assume graph 1 is “V vs x”: the electric potential is negative 

and the same everywhere (-20 volts); as  is minus the 

slope of V (that is, ), the electric field in the 

region is zero; 
 
--if graph 1 is an electric field versus position graph, what can you say about the region 

(solution below); 
 
--assume graph 1 is “  vs x”: the electric field is negative and constant everywhere (-20 

nt/C); as the change of V is minus the area under the curve (that is, ), the 
voltage must change uniformly throughout in a positive sense (it must be getting bigger as x 
increases).  In other words, its graph must have the general form of graph 2. 
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--if graph 2 is an electric potential versus position graph, 
what can you say about the region (solution below); 

 
--assume graph 2 is “V vs x”: the electric potential is 

increasing at a constant rate with a positive slope, going 
from a negative voltage, through zero voltage at x = 5 and 
into the positive region thereafter; as  is minus the 

slope of V (that is, ), the electric field in the 

region is negative and constant (cause that’s what minus the slope is); 
 
--if graph 2 is an electric field versus position graph, what can you say about the region 

(solution below); 
 
--assume graph 2 is “  vs x”: the electric field is negative near the origin with a large 

magnitude getting smaller at it approaches x = 5 where it is zero, then it changes directions 
becoming positive and increasing in magnitude as it proceeds in the +x-direction; as the 
change of V is minus the area under the curve (that is, ), the voltage must 
change quite a bit in the region near the origin, changing less and less as it nears x = 5 where 
it changes not at all, then begins to change more and more as it continues on in the +x-
direction.  If we were looking at equipotential lines, they would be quite jammed up toward 
the origin, spreading out on either side of x = 5, then becoming increasingly more and more 
jammed up as you moved along the +x-axis.  Lastly (and this is a bit over and above, but 
what the heh), as V is minus the anti-derivative of E, and as E is a positive linear function, 
you would expect V to be a negative quadratic (or downward parabolic).  This last point is a 
little farther than you’d probably be expected to go, though. 

 
--there are no defined electrical potential-energy functions in the same sense that there is a 

potential energy function for, say, a spring; 
 
--the potential energy of a charge in an electric field will be U = qV, where the sign of the 

charge must be included (that is, positive charges have positive potential energies and 
negative charges have negative potential energies); 

 
--as with all situation in which energy considerations can be used, conservation of energy is 

applicable with ; 
 
 

 
Capacitance: 
 

--a capacitor is a circuit element made up of two plates that are electrically insulated from one 
another, and that have space (either filled with an insulator or not) between the plates; 
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--in an electrical circuit, charge accumulates on one plate electrostatically repulsing like 

charge off the other plate leaving it with the opposite charge—that means the plates will 
hold equal amounts of opposite charge; 

 
--it has been experimentally observed that the voltage across a capacitor is proportional to the 

charge on one plate; the proportionality constant is called the capacitor’s capacitance; 
 
--the units for capacitance are coulombs per volt, or the farad; 
 
--conceptually, what the capacitance tells you is how much charge the device can hold, per 

unit volt; 
 
--in a DC setting, a capacitor stores energy in the electric field between its plates; 
 
--a dielectric is an insulating material that can be put between the plates of a capacitor; 
 
--the dielectric constant  is the proportionality constant between the capacitance of a cap 

with a dielectric and the capacitance of the same cap without a dielectric (that is, 
); 

 
--some books use the symbol  for the dielectric constant instead of ; 
 
--due to the van der Waal effect, a dielectric drops the effective voltage across the plates 

increasing the capacitor’s capacitance (remember, C = Q/V); 
 
--you can increase the capacitance of a capacitor in one of three ways:  

a.) increasing the plate area will allow for more charge to be stored on a plate per volt; 
b.) bringing the plates closer together will allow more charge to be repulsed off the 

opposite plate thereby increasing the charge per volt; 
c.) place a dielectric between the plates increases the capacitor’s capacitance; 

 
--capacitors in series act like resistors in parallel; 
 
--capacitors in parallel act like resistors in series; 
 
--the dielectric constant was needed to allow  in the Gauss’s Law equation to be solely 

associated with the charge on the cap plate (ignoring the induced charge on the insulating 

dielectric)—that equation became ; 
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--to derive the capacitance of a capacitor in terms of physical parameters (that is, to determine

), you need to derive an expression for the voltage difference  between the 

plates of the cap in terms of the charge on one plate; to do that:  
a.) for the cap’s geometry, use Gauss’s Law to determine the electric field between the 

cap’s plates; 
b.) use the relationship between electric fields and electrical potential differences to 

determine the voltage difference across the plates (that is, use ); 

c.) determine capacitance using ; 

 
--capacitors are used whenever one needs a quick infusion of charge (example: powering a 

flashbulb in a camera); 
 
--in an RC circuit in which the capacitor is uncharged, the capacitor will initially act like a 

short with all the voltage drop across the elements happening across the resistor—that 
means the initial current for such a situation will be V/R; 

 
--the time constant for a capacitor/resistor circuit is RC; 
 
--in a RC circuit in which the capacitor is initially uncharged:  

a.) it will take one time constant (RC) for the cap to charge to 63% of its maximum; 
b.) because there is no charge initially on the capacitor’s plates, there will be no voltage 

across the cap and all the voltage drop will be across the resistor; if the battery 
voltage is V, all that voltage will be across the resistor and the current through the 
circuit will initially be V/R. 

c.) after a long time, current will go to zero because the cap will have completely charged 
up and the battery will no longer be able to force charge on the cap plates; 

d.) putting “c” differently, after a long time, current will go to zero as all the battery’s 
voltage drop will happen across the charge cap with no voltage drop across the 
resistor, and as current through a resistor is proportional to the voltage across the 
resistor, that means no current in the circuit; 

e.) after a long time with all the battery voltage across the cap, the charge on the cap will 

be  (this from the definition of capacitance ) 

f.) it will take one time constant for the current to drop out 63% to 37% of its initial value 
(which was its maximum); 

 
--in a RC circuit in which the capacitor is initially charged and there is no battery, just a 

resistor:  
a.) the cap will discharge through the resistor, acting like a non-linear power supply for 

the circuit; 
b.) after one time constant (RC) the cap will discharge 63% of its maximum charge down 

to 37%; 
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c.) because the initial amount of charge available for discharge is maximum, the current 
will begin as large as it will be and will diminish 63% worth down to 37% of its 
maximum in one time constant (RC). 

d.) after a long time, current will go to zero because there will be no more charge on the 
cap; 

 
 
Circuits: 
 

--DC power in a circuit is provided by a DC power supply or battery, both of which have a 
high voltage terminal and a low voltage terminal; 

 
--the voltage difference across the terminals of a DC power source generate an electric field in 

the wires connected to the source this motivate charge to flow through the circuit; 
 
--a voltmeter is the device used to measure the voltage difference across an element (like a 

power supply)—it is placed across an element; 
 
--voltmeters are polar, which is to say they have a high voltage terminal and a low voltage 

terminal; 
 
--as charge carriers are accelerated by the electric field, flowing through the circuit, they 

crashes into the atomic structure of the wire giving up their kinetic energy in the process—
this energy loss is absorbed by the system either by having the wire’s atoms throw their 
valence electrons into higher energy levels (whereupon they cascade back down to the 
ground state, giving off photons . . . this is how light is made) or making the molecular 
structure vibrate more (this shows itself as heat); 

 
--electrons move very slowly in an electric circuit, but the electric field sets itself up a near the 

speed of light; 
 
--current is a measure of the amount of charge that passes a point per unit time; 
 
--the units for current is coulomb/second, aka the ampere (or just amp); 
 
--in a circuit, a branch is section of the circuit in which the current is the same throughout; 
 
--in a circuit, a junction is called a node; 
 
--an ammeter is the device used to measure the current through a circuit; it is placed in line in 

the branch in which the current value is desired;  
 
--a resistor is a circuit element that does two things: it limits the amount of current that flows 

in a branch (a big resistor means a small current, etc.) and it converts electrical energy into 
some other form of energy (like an incandescent light bulb whose filament takes electrical 
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current and uses it to generate light, or the toaster that takes electrical energy and turns it 
into heat). 

 
--Ohm’s Law states the voltage across a resistor will be proportional to the current through a 

resistor (circuit elements that act this way are called ohmic); 
 
--the proportionality constant that relates the voltage across and current through a resistor is 

called the resistor’s resistance R; 
 
--the units of resistance, volts/amp, is named ohm and its symbol is ; 
 
--resistors in series connect to one another in one place only; 
 
--there are no nodes (no junctions) interior to a series combination;  
 
--resistors in series have an equivalent resistance equal to the sum of the resistors in the 

combination; 
 
--if you add a resistor to a series combination, the equivalent resistance goes up and the 

current into the branch goes down (for a given voltage); 
 
--the equivalent resistance of a series combination will always be larger than the largest 

resistor in the combination; 
 
--resistors in parallel connect to one another in two places; 
 
--there are nodes (no junctions) interior to a parallel combination;  
 
--resistors in parallel have an equivalent resistance equal to the inverse of the sum of the 

inverse resistances in the combination; 
 
--if you add a resistor to a parallel combination, the equivalent resistance goes down and the 

current into the combination goes up (for a given voltage); 
 
--if you add a resistor to a parallel combination, assuming the voltage across the combination 

doesn’t change (that is, using an ideal battery), the current through each of the original 
resistors will not change (same voltage across each) but the current drawn from the battery 
will increase to accommodate the needs of the new resistor.  From the battery’s perspective, 
this need for more current looks like the effective resistance had diminished (lower the 
effective resistance and the current goes up), which is the conceptual justification for the 
observation made directly above. 

 
--the equivalent resistance of a parallel combination will always be smaller than the smallest 

resistor in the combination; 
 

Ω
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--in analyzing a circuit by the seat of your pants, is possible to track the voltage changes 
around a path to determine the voltage difference between two points in a circuit; 

 
--in analyzing a simple, single battery circuit by the seat of your pants, it is sometimes 

possible to determine the equivalent resistance of the resistors in the circuit and put that 
value across the battery voltage to determine the current drawn from the battery; 

 
--in analyzing a circuit by the seat of your pants, start where you know the most information 

and work outward; 
 
--a more formal way to analyze circuits is Kirchoff’s Laws; 
 
--Kirchoff’s First Law is: the sum of the currents into a node equals the sum of the currents 

out of that node; 
 
--Kirchoff’s Second Law is: the sum of the voltage changes around a closed loop must equal 

zero; 
 
--a loop is defined as any path that starts in a circuit and comes back to the start point; 
 
--with an ideal battery in parallel with a parallel combination of resistors, adding a resistor to 

the combination will do nothing to the current through any of the parallel resistors (the 
voltage will not have changed across them) but the current drawn from the battery will have 
increased; 

 
--with a real, non-ideal battery in parallel with a parallel combination of resistors, adding a 

resistor to the combination will drop the current through each of the parallel resistors; this is 
because internal resistance in the battery produces a current-dependent voltage drop internal 
to the battery, so the terminal voltage, which is equal to the battery’s EMF minus that 
internal voltage drop, will diminish when the current increases due to the addition of that 
resistor.   

 
 
 
 
 
 
 
 
   
 
 
 
 
 
 


